20 research outputs found

    Genome-Wide Analysis of the Effects of Heat Shock on a Saccharomyces cerevisiae Mutant With a Constitutively Activated cAMP-Dependent Pathway

    Get PDF
    We have used DNA microarray technology and 2-D gel electrophoresis combined with mass spectrometry to investigate the effects of a drastic heat shock from 30℃ to 50℃ on a genome-wide scale. This experimental condition is used to differentiate between wild-type cells and those with a constitutively active cAMP-dependent pathway in Saccharomyces cerevisiae. Whilst more than 50% of the former survive this shock, almost all of the latter lose viability. We compared the transcriptomes of the wildtype and a mutant strain deleted for the gene PDE2, encoding the high-affinity cAMP phosphodiesterase before and after heat shock treatment. We also compared the two heat-shocked samples with one another, allowing us to determine the changes that occur in the pde2Δ mutant which cause such a dramatic loss of viability after heat shock. Several genes involved in ergosterol biosynthesis and carbon source utilization had altered expression levels, suggesting that these processes might be potential factors in heat shock survival. These predictions and also the effect of the different phases of the cell cycle were confirmed by biochemical and phenotypic analyses. 146 genes of previously unknown function were identified amongst the genes with altered expression levels and deletion mutants in 13 of these genes were found to be highly sensitive to heat shock. Differences in response to heat shock were also observed at the level of the proteome, with a higher level of protein degradation in the mutant, as revealed by comparing 2-D gels of wild-type and mutant heat-shocked samples and mass spectrometry analysis of the differentially produced proteins

    Anti-tumour therapeutic efficacy of OX40L in murine tumour model

    Get PDF
    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy

    Growth control of the eukaryote cell: a systems biology study in yeast.

    Get PDF
    BACKGROUND: Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. RESULTS: Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. CONCLUSION: This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore